Original Article

Prevalence of Peripartum Cardiomyopathy in Pre-Eclampsia Patients Presenting To a Tertiary Care Health Facility

Ramal Khalid¹, Sadia Sheerazi², Javeria Amjad Memon³, Rukhsana⁴, Anila Mujadid⁵, Gulfareen Haider⁶

Women Medical Officer, Sindh govt. Hospital Koshar, Latifabad (Ex. Resident LUMHS)
 Women Medical Officer, RHC Daur, (Ex. Resident LUMHS)
 Assitant Professor of Cardiology Indus Medical College T M Khan, (Ex. Resident LUMHS)
 Senior Demonstrator of Physiology, Suleman Roshan Medical College Tando Adam
 Assiatant Professor, Obs & Gynae, LUMHS Jamshoro
 Professor of Obs & Gynae, Isra University Hospital Hyderabad

Correspondence: Dr Ramal khalid WMO Sindh govt Hospital Koshar, Latifabad Ramal_khalid@hotmail.com

Abstract

Objective: To determine the frequency of Peripartum cardiomyopathy (PPCM) in Pre-eclamptic women presenting to a tertiary care facility. Methodology: This descriptive cross-sectional study was conducted over a period of six months, from December 9, 2021, to June 10, 2022, in the Gynecology and Obstetrics Unit I of Liaquat University Hospital, Hyderabad. The study population comprised preeclampsia women aged 18 to 45 years, with a gestational age of more than 20 weeks as confirmed by early ultrasound, regardless of parity, and carrying a single alive fetus. PPCM was diagnosed based on echocardiographic findings, with the key diagnostic criterion being a left ventricular ejection fraction (LVEF) of less than 45%.

Results: Of 102 patients, the mean age of the patients was 25.57 ±3.73 years. The mean height, weight, and BMI of the patients were 160.11 ±8.89 cm, 75.09 ±14.82 kg, and 29.08 ±5.19 kg/m2 respectively. The mean 24 hours proteinuria level of the patients was 344.62 ±16.35 mg/24 hours. The mean ejection fraction was found to be 55.01 ±9.69%. Frequency of PPCM was observed in 9 (9%) patients, which was statistically insignificant according to age, residential status, BMI and mode of delivery (>0.05).

Conclusion: PPCM was concluded to be 9% among pre-eclamptic women, highlighting a notable association between pre-eclampsia and the development of cardiac dysfunction during the peripartum period, which underscoring the need for enhanced clinical observation and routine cardiovascular assessment in this population.

Keywords: Peripartum cardiomyopathy, pre-eclamptic women, ejection fraction

Cite this article as: Khalid R, Sheerazi S, Memon JA, Rukhsana, Anila M, Haider G. Frequency of Peripartum Cardiomyopathy in Pre-Eclampsia Patients Presenting To a Tertiary Care Health Facility. J Soc Obstet Gynaecol Pak. 2025; 15(3):170-175. DOI. 10.71104/jsogp.v15i3.923

Introduction

Peripartum cardiomyopathy (PPCM), an uncommon idiopathic cardiomyopathy, is a potentially fatal medical condition that results from systolic heart failure associated with reduced ejection fraction below 45%. It typically develops in the third trimester or within five months postpartum. It carries a significant disease burden and maternal mortality rates around the world, affecting around 3-5% of pregnancies.^{1,2}

PPCM is diagnosing among 19% of females during their third trimester, while 75% of the women are diagnosed during initial postpartum days, 45% of these postpartum diagnosis are encountered during first week.³ The international reports on PPCM incidence varies between 1/100 and 1/20000 live births based on geographic, socioeconomic, and ethnic factors, with an average incidence of 1 in every 2000 viviparities.⁴ European and Japanese regions have been reported with least incidence varying between 1/2500 and 1/20000, while high estimates have been documented from Caribbean and African regions, ranging between 1/100 and 1/300 viviparities.⁵

In Pakistan, PPCM incidence has not been well-established, but emerging data has suggested a

Authorship Contribution: 1,4Substantial contributions to the conception or design of the work or the acquisition, 6Supervision, 2,3Drafting the work or revising it critically for important intellectual content.

Funding Source: none Conflict of Interest: none

Received: Feb 19, 2025

Revised: June 17, 2025 Accepted: June 24, 2025 considerable prevalence among pregnant and hypertensive women in this region. While, PPCM estimates from European region show 1 PPCM case per 4950 childbirths.^{6,7} The prevalence of PPCM may be getting higher due to a number of factors including older maternal age, higher rates of multiple gestations as a result of contemporary fertility techniques, improved detection and better awareness of PPCM. ^{8,9}

Preeclampsia (PE) and other Pregnancy-related hypertensive disorders have been linked to PPCM development. Previous studies suggest that that PE is found in 22% of PPCM patients, 10 while, more recent studies suggest a much higher prevalence of preeclampsia (80%) in all PPCM cases. 11-14 PPCM and PΕ share similar mechanisms in terms of pathophysiology, especially immunological and inflammatory responses that involve angiogenic imbalance and endothelial dysfunction. Both of these pregnancy-related conditions reveal elevated antiangiogenic factors (sFlt-1) via antagonizing the vasculotropin and placental growth factor (PIGF), angiogenic imbalance and endothelial dysfunction in PPCM and PE cases. 15,16 PPCM frequency among preeclampsia patients in Pakistan has not been well-explored. However, a recent study revealed 62% prevalence of preeclampsia among PPCM cases, with higher rates of serious maternal complications among preeclampsia patients. Early identification of the patients, who are at risk of PPCM development, would allow better planning and prompt interventions that may involve heart failure therapies.¹⁷

As PPCM is a rare but serious complication of pregnancy, with pre-eclampsia being a significant risk factor. Despite this link, data on the frequency of PPCM among pre-eclamptic women is limited, especially in low-resource settings. This study aims to address that gap by assessing how often PPCM occurs in pre-eclamptic patients, which could lead to earlier diagnosis, better management, and improved maternal outcomes. The findings may also help shape clinical screening protocols and inform health policies to reduce maternal morbidity and mortality.

Methodology

This was a descriptive cross-sectional study conducted over a period of six months, from December 9, 2021, to June 10, 2022, at the Ward of Gynecology and Obstetrics Unit I, Liaquat University Hospital, Hyderabad. The total sample size was calculated to be 102 using the WHO sample size calculator, considering

a 95% confidence interval, a margin of error of 6.3%, and a reported frequency of preeclampsia in PPCMP (Peripartum Cardiomyopathy) of 11.9%. A consecutive sampling technique was employed. Inclusion criteria consisted of pre-eclamptic women aged 18 to 45 years with a gestational age greater than 20 weeks as determined by an early ultrasound scan, regardless of parity, and carrying a single, alive fetus. Women with a known history of heart failure, ischemic heart disease, smoking, or pre-existing hypertension were excluded from the study. Following approval from the CPSP Research Evaluation Unit Ref no CPSP.REU/Obg-2020-164-10026 and the ethical review committee of the institute, data were collected prospectively. All eligible patients presenting during the study period were enrolled after obtaining verbal informed consent.

Preeclampsia was diagnosed in women with gestational amenorrhea of more than 20 weeks, systolic blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg on two separate occasions at least four hours apart, with previously normal blood pressure readings, and proteinuria ≥300 mg in a 24hour urine collection. Peripartum cardiomyopathy (PPCMP) was diagnosed in women developing heart failure in late pregnancy or up to five months postpartum, with no prior heart disease, and a left ventricular ejection fraction below 45% echocardiography. Heart failure (HF) was identified by the presence of at least two symptoms such as shortness of breath, fatigue, leg swelling, irregular heartbeat, or abdominal bloating. Gestational age was determined using an ultrasound performed before 24 weeks of gestation. A joint team comprising a cardiologist and a gynecologist assessed each patient.

Blood pressure was measured using an aneroid sphygmomanometer. A detailed history, examination. and 2-D echocardiography performed to evaluate left ventricular (LV) systolic function and rule out other cardiac causes of heart failure. **PPCM** was diagnosed based echocardiographic evidence of LV ejection fraction less than 45%. Additional data, including age, parity, residential and educational status, were recorded in a structured questionnaire. Data were entered and analyzed using SPSS version 20.

Results

A total of 102 patients included in the study revealed a mean age of 25.57 ± 3.73 years, mean of 34.04 ± 3.33 weeks (range 25-40 weeks), average height of 160.11

 \pm 8.89 cm, and the average weight was 75.09 \pm 14.82 kg, ranging from 48 to 117 kg. The mean Body Mass Index (BMI) was 29.08 ± 5.19 kg/m². Most participants (64.71%) were from rural areas, while 35.29% were from urban settings. In terms of education, 41.18% 55.88% education up to were illiterate. had matriculation, and only 2.94% had completed The majority (94.12%) intermediate or higher. presented during the antepartum period, and 70.59% delivered via cesarean section. (Table I)

Table I: Demographic distribution of patients. (n=102)						
	Frequency					
AGE (years)						
≤ 25	49	48.03%				
> 25	53	51.96%				
Mean ±SD	25.57 ±3.73					
Min-Max	18-35					
HEIGHT (cm)						
Mean ±SD	160.11 ±8.89					
Min-Max	142-183					
WEIGHT (Kg)						
Mean ±SD	75.09 ±14.82					
Min-Max	48-117					
BMI (kg/m2)						
≤ 30	63	61.76%				
> 30	39	38.23%				
Mean ±SD	29.08 ±5.19					
Min-Max	15.95 – 46.99					
GESTATIONAL AGE (Weeks)						
≤ 34	47	46.07%				
> 34	55	53.92%				
Mean ±SD	34.04 ±3.33					
Min-Max	25-40					
Residence status						
Rural	66	64.71%				
Urban	36	35.29%				
Educational status						
Illiterate	42	41.18%				
≤ Matric	57	55.88%				
≥ Intermediate	3	2.94%				
Period of presentation						
Prepartum	96	94.12%				
Postpartum	6	5.88%				
Mode of delivery						
NVD	30	29.41%				
C-section	72	70.59%				

Most of the cases had elevated 24-hour proteinuria levels and reduced ejection fractions, indicating possible renal and cardiac involvement. Heart failure was present in 15.69% of cases, while 8.82% were diagnosed with peripartum cardiomyopathy (PPCM), reflecting notable cardiac complications among the study population. (Table II)

The comparison of peripartum cardiomyopathy (PPCM) with various study variables among 102 patients

revealed that PPCM was significantly associated with heart failure (p < 0.001) and reduced ejection fraction (EF \leq 55%) (p = 0.007). No statistically significant associations were found between PPCM and other factors such as age, BMI, gestational age, residence, period of presentation, mode of delivery, or proteinuria levels. (Table III)

Table II: Clinical characteristics of patients. (n=102)						
Parameters	Frequency	Percentage				
24 hours proteinuria level (mg)						
≤ 340	34 33.33%					
> 340	68 66.67%					
Mean ±SD	344.62 ±16.35					
Min-Max	320-360					
Ejection Fraction (%)						
≤ 55	59	57.84%				
> 55	43	42.16%				
Mean ±SD	55.01 ±9.69					
Min-Max	25-75					
Heart failure						
Yes	16	15.69%				
No	86 84.31%					
PPCM						
Yes	9	8.82%				
No	93	91.18%				

Discussion

PPCM, a potentially reversible and de novo, cardiomyopathy, may occurs either during third trimester or during initial postpartum days. The potential risk factors of PPCM include age, ethnicity/race, multiple gestations, multiparity, and preeclampsia. 18 In this study 102 patients were enrolled and the mean age of the patients was 25.57 ±3.73 years. Majority of patients (52%) were aged >33 years. Rural residence was observed in majority 66 (65%) of patients. Larger proportion of patients had attained matric or below (56%), followed by illiterate (41%). In line with these demographic details, Sliwa et al. 19 suggested that underprivileged women with limited healthcare access, lower literacy rate, and poor living standards are more subjected to delayed diagnosis and poor management of conditions like PE and PPCM, which result in significantly poorer feto-maternal outcomes.

In this study, BMI in 63 (62%) patients was \leq 30 kg/m² and in 39 (38%) subjects BMI was >30 kg/m². The mean height, weight, and BMI of the patients were 160.11 \pm 8.89 cm, 75.09 \pm 14.82 kg, and 29.08 \pm 5.19 kg/m² respectively. Moreover, patients with >34 weeks of gestational age 55 (54%) were more than those with 34 weeks or less (46%), with the mean gestational age

of 34.04 ±3.33 weeks. Comparable figures were documented in the study of Khade et al.,²⁰ where mean BMI and gestational age of the patients diagnosed with peripartum cardiomyopathy were 25.6 kg/m² and 36 weeks respectively.

Table III: Co (n=102)			th study va	ariables.		
Age, years		PPCM		p-		
	Yes	No (07.0)	40 (400)	value		
≤25	6 (12.2)	43 (87.8)	49 (100)	0.044		
>25	3 (5.7)	50 (94.3)	53 (100)	0.241		
Total	9 (8.8)	93 (91.2)	102 (100)			
BMI, kg/m ²	7 (44 4)	FC (00 0)	CO (400)			
≤30	7 (11.1)	56 (88.9)	63 (100)	0.004		
>30	2 (5.1)	37 (94.9)	39 (100)	0.301		
Total	9 (8.8)	93 (91.2)	102 (100)			
Gestational a		(2.1. =)				
≤34	4 (8.5)	43 (91.5)	47 (100)			
>34	5 (9.1)	50 (90.9)	55 (100)	0.918		
Total	9 (8.8)	93 (91.2)	102 (100)			
Residential S						
Rural	7 (10.6)	59 (89.4)	66 (100)			
Urban	2 (5.6)	34 (94.4)	36 (100)	0.487		
Total	9 (8.8)	93 (91.2)	102 (100)			
Period of pre	sentation					
Peripartum	8 (8.3)	88 (91.7)	96 (100)			
Postpartum	1 (16.7)	5 (83.3)	6 (100)	0.485		
Total	9 (8.8)	93 (91.2)	102 (100)			
Mode of Deliv	very					
Normal						
Vaginal	3 (10.0)	27 (90.0)	30 (100)			
Delivery				0.707		
Cesarean	C (0, 0)	CC (O4 7)	70 (400)	0.787		
Section	6 (8.3)	66 (91.7)	72 (100)			
Total	9 (8.8)	93 (91.2)	102 (100)			
Heart Failure						
Yes	6 (37.5)	10 (62.5)	16 (100)			
No	3 (3.5)	83 (96.5)	86 (100)	< 0.001		
Total	9 (8.8)	93 (91.2)	102 (100)			
Proteinuria level (mg/24 hrs)						
≤340	1 (2.9)	33 (97.1)	34 (100)			
>340	8 (11.8)	60 (88.2)	68 (100)	0.266		
Total	9 (8.8)	93 (91.2)	102 (100)	0.200		
Ejection Fraction (%)						
<u>≤55</u>	9 (15.3)	50 (84.7)	59 (100)			
>55	0 (0)	43 (100)	43 (100)	0.007		
Total	9 (8.8)	93 (91.2)	102 (100)	3.007		
iolai	3 (0.0)	30 (31.2)	102 (100)			

In current study, period of PPCM presentation was prepartum in 96 (94%) and postpartum in 6 (6%) patients, while normal vaginal delivery was observed in 30 (29%) and cesarean section in 72 (71%) of the patients. Partially supporting these findings, in the study of Douglass et al.,²¹ significantly higher number of women with PPCM diagnosis (43.8%) underwent emergency c-section than those without PPCM (14.6%) (P < 0.001). While contrary to our findings, they reported that majority of PPCM (77.1%) cases were

diagnosed postpartum, with median diagnosis time of 4 days.

In this study, 24 hours urine protein level was >340 mg/24 hours in 68 (67%) patients and ≤340 mg/24 hours in 34 (33%), with mean proteinuria level of 344.62 ±16.35 mg/24 hours. Proteinuria levels above 300 mg/24h are associated with poor neonatal and feto-materal outcomes in pre-eclampsia patients. ²² Similarly, studies conducted by Xu et al.²³ and Yıldız & Yılmaz ²⁴, showed unfavorable outcomes in during pregnancy and post-delivery among neonates and their PE diagnosed mothers at elevated proteinuria levels, suggesting significantly poorer effect among pre-eclamptic women when urine protein levels are >5000 mg/24h.

In this study, PPCM was observed in 9 (9%) of preeclampsia patients .The mean ejection fraction (EF) was 55.01 ±9.69% and a higher frequency of 59 (58%) patients showed ejection fraction ≤55% in comparison to 43 (42%) patients with ejection fraction of >55%. Heart failure was observed in 16 (16%) patients, suggesting mild cardiac dysfunction. Corresponding to these statistics, a longitudinal study of Lindley et al., 25 found preeclampsia among 44% PPCM patients. They found considerably lower mean EF values (29%) at diagnosis of preeclampsia than ours (55.1%), possibly be due to differences in inclusion criteria, as they included diagnosed cases of PPCM, whereas our study enrolled pre-diagnosed pre-eclamptic patients with or without PPCM. Additionally, they found better EF recovery (80%) among PPCM and preeclampsia patients compared to those without preeclampsia (25%). Another study by Osterman-Pla et al. ²⁶ reported preeclampsia history in 50% of their PPCM patients, with lower mean EF of 35% ± 8% at diagnosis of PPCM.

In the present study, no significant differences were observed between peripartum cardiomyopathy (PPCM) and various study variables, including age groups, BMI, gestational age, residential status, educational status, prepartum and postpartum periods of presentation, mode of delivery, and proteinuria levels (p < 0.05). These findings differ from several studies that have identified these factors as potential risk factors for PPCM. Like Lee et al²⁷ found that older age (\geq 35 years), mode of delivery (cesarean section), and preeclampsia were significantly associated with PPCM (p < 0.01). Similarly, Davis et al²⁸ identified lower social class and obesity as significant risk factors for PPCM

development (p < 0.05). These findings support the notion that socio-demographic factors, such as age and obesity, may play a role in the development of PPCM. In contrast, partially supporting our findings, Elkayam et al²⁹ reported a non-significant association between PPCM and several study variables, including age, BMI, gestational age, and mode of delivery. The lack of insignificant associations in our study in contrast to other studies may due to the differences in the study population, sample size, or regional factors. It suggests that while traditional risk factors may be relevant in some settings, other unexamined factors may also contribute to the development of PPCM in preeclampsia patients. Present study highlights the significant association between pre-eclampsia and PPCM, emphasizing the need for routine cardiac evaluation in high-risk pregnancies to improve maternal outcomes. Despite certain limitations such as the single-center setting, small sample size, and lack of long-term follow-up, the study highlights the need for future multicenter, longitudinal research focused on developing standardized screening protocols identifying early diagnostic markers to improve the early detection and management of PPCM in preeclamptic women.

Conclusion

Overall peripartum cardiomyopathy identified to be 9% as a notable frequency of peripartum among preeclampsia patients, with heart failure and reduced ejection fraction being key predictors. Elevated proteinuria and low ejection fractions were common, suggesting renal and cardiac involvement. The findings underscore the importance of early detection of cardiac dysfunction, particularly reduced ejection fraction, in pre-eclampsia patients to prevent PPCM. Based on certain study limitations, further longitudinal studies are recommended to improve diagnostic strategies and early intervention for better maternal outcomes.

References

- Safira A, Tjahjadi AK, Adytia GJ, Waitupu A, Sutanto H. Peripartum cardiomyopathy unveiled: Etiology, diagnosis, and therapeutic insights. Curr Probl Cardiol. 2024 Feb 22:102474. https://doi.org/10.1016/j.cpcardiol.2024.102474
- Koziol KJ, Aronow WS. Peripartum cardiomyopathy: current understanding of pathophysiology, diagnostic workup, management, and outcomes. *Curr Probl Cardiol*. 2023;48(8):101716. https://doi.org/10.1016/j.cpcardiol.2023.101716
- Ziccardi MR, Siddique MS. Peripartum cardiomyopathy. In: StatPearls [Internet]. 2025 [cited 2025 May 3]. Available from: https://pubmed.ncbi.nlm.nih.gov/29489231/

- Viljoen C, Hoevelmann J, Sliwa K. Peripartum cardiomyopathy: risk factors and predictors of outcome. Curr Opin Cardiol. 2023;38(3):223-32.
 - https://doi.org/10.1097/HCO.0000000000001037
- Muduli SK. Peripartum cardiomyopathy revisited: current concepts. J Curr Cardiol. 2024;2(2):77-84. https://doi.org/10.4103/JCC.JCC_19_24
- Anwar A. The unusual presentation of peripartum cardiomyopathy leading to fatal outcomes in two young parturients: case reports. JCPSP. 2025;3(12):24-6. https://doi.org/10.29271/jcpspcr.2025.24
- Jackson AM, Macartney M, Brooksbank K, et al. A 20-year population study of peripartum cardiomyopathy. Eur Heart J. 2023;44(48):5128-41.
 - https://doi.org/10.1093/eurheartj/ehad626
- Garovic VD, White WM, Vaughan L, et al. Incidence and long-term outcomes of hypertensive disorders of pregnancy. *J Am Coll Cardiol*. 2020;75(18):2323-34.
 - https://doi.org/10.1016/j.jacc.2020.03.028
- Biljic-Erski A, Rajovic N, Pavlovic V, et al. Hypertensive disorders of pregnancy and peripartum cardiomyopathy: a meta-analysis of prevalence and impact on left ventricular function and mortality. *J Clin Med.* 2025;14(5):1721. https://doi.org/10.3390/jcm14051721
- Bello N, Rendon IS, Arany Z. The relationship between pre-eclampsia and peripartum cardiomyopathy: a systematic review and metaanalysis. J Am Coll Cardiol. 2013;62(18):1715-23. https://doi.org/10.1016/j.jacc.2013.08.717
- Arfianda D, Wicaksono B, Gumilar KE. Characteristic of peripartum cardiomyopathy (PPCM) pregnancy and preeclampsia in Dr. Soetomo Hospital, Surabaya, Indonesia, 2014-2016. *Majalah Obstet Ginekol*. 2019;27(1):40-4. https://doi.org/10.20473/mog.V1I12019.40-44
- 12. Susanto CM, Gumilar KE. Peripartum cardiomyopathy and its relationship with preeclampsia. *Majalah Obstet Ginekol*. 2020;28(2):52-8.
 - https://doi.org/10.20473/mog.V28I22020.52-58
- Febrimulya DC, Wicaksono B. Peripartum cardiomyopathy in pregnancy with severe preeclampsia: a cross-sectional study in a tertiary hospital. *Int J Res Publ.* 2021;84(1):152-6. https://doi.org/10.47119/IJRP100841920212234
- Priangga B, Dachlan EG, Ferdiansyah AL. Relationship between PPCM and preeclampsia: pathophysiology, cardiovascular changes, and echocardiographic characteristics. *Int J Res Publ.* 2022;98(1):7-. https://doi.org/10.47119/IJRP100981420223036
- Akbar MI, Yosediputra A, Pratama RE, et al. Pravastatin suppresses inflammatory cytokines and endothelial activation in patients at risk of developing preeclampsia: INOVASIA study. J Matern Fetal Neonatal Med. 2022;35(25):5375-82. https://doi.org/10.1080/14767058.2021.1879785
- Gumilar KE, Rauf KB, Akbar MI, et al. Connecting the dots: exploring the interplay between preeclampsia and peripartum cardiomyopathy. *J Pregnancy*. 2024;2024:7713590. https://doi.org/10.1155/2024/7713590
- Abbas S, Yousfani S, Shaikh F, et al. Association of peripartum cardiomyopathy with pre-eclampsia and maternal outcome. *J Pharm Res Int.* 2021;33(31A):110-5. https://doi.org/10.9734/jpri/2021/v33i31A31669
- Fernandez-Campos B, Silversides CK. Unveiling the complexities of peripartum cardiomyopathy: hemodynamic insights and recovery patterns. *JACC Asia*. 2025;5(4):565-7. https://doi.org/10.1016/j.jacasi.2025.03.001
- Sliwa K, van der Meer P, Viljoen C, et al. Socio-economic factors determine maternal and neonatal outcomes in women with peripartum cardiomyopathy: a study of the ESC EORP PPCM registry. *Int J*

- Cardiol. 2024;398:131596. https://doi.org/10.1016/j.ijcard.2023.131596
- Khade SA, Shinde SS, Wadhwa ED, et al. Peripartum cardiomyopathy: a retrospective study at a tertiary care center. J South Asian Fed Obstet Gynaecol. 2022;14(5):583-6. https://doi.org/10.5005/jp-journals-10006-2110
- Douglass EJ, Cooper LT Jr, Morales-Lara AC, et al. A case-control study of peripartum cardiomyopathy using the Rochester Epidemiology Project. J Card Fail. 2021;27(2):132-42. https://doi.org/10.1016/j.cardfail.2020.12.021
- Chadha A, Tayade S. Urinary protein-to-creatinine ratio: an indicator of adverse clinical outcomes in preeclampsia with proteinuria. *Cureus*. 2022;14(3):e23341. https://doi.org/10.7759/cureus.23341
- Xu X, Wang Y, Xu H, et al. Association between proteinuria and maternal and neonatal outcomes in pre-eclampsia pregnancy: a retrospective observational study. J Int Med Res. 2020;48(4):0300060520908114. https://doi.org/10.1177/0300060520908114
- 24. Yıldız GA, Yılmaz EP. The association between protein levels in 24-hour urine samples and maternal and neonatal outcomes of pregnant women with preeclampsia. *J Turk Ger Gynecol Assoc.* 2022;23(3):190.
 - https://doi.org/10.4274/jtgga.galenos.2022.2022-4-3

- Lindley KJ, Conner SN, Cahill AG, et al. Impact of preeclampsia on clinical and functional outcomes in women with peripartum cardiomyopathy. Circ Heart Fail. 2017;10(6):e003797. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003797
- Osterman-Pla AD, López-Cepero R, Jiménez L, et al. Peripartum cardiomyopathy: experience at a tertiary care center in Puerto Rico. P R Health Sci J. 2016;35(4):224-7.
- Lee S, Cho GJ, Park GU, et al. Incidence, risk factors, and clinical characteristics of peripartum cardiomyopathy in South Korea. Circ Heart Fail. 2018;11(4):e004134. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004134
- Davis MB, Jarvie J, Gambahaya E, et al. Risk prediction for peripartum cardiomyopathy in delivering mothers: a validated risk model. J Card Fail. 2021;27(2):159-67. https://doi.org/10.1016/j.cardfail.2020.12.022
- Elkayam U, Akhter MW, Singh H, et al. Pregnancy-associated cardiomyopathy: clinical characteristics and a comparison between early and late presentation. *Circulation*. 2005;111(16):2050-5. https://doi.org/10.1161/01.CIR.0000162478.36652.7E
- Lewey J, Levine LD, Elovitz MA, et al. Importance of early diagnosis in peripartum cardiomyopathy. *Hypertension*. 2020;75(1):91-7. https://doi.org/10.1161/HYPERTENSIONAHA.119.13291